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J .  Phys. A: Math. Gen. 18 (1985) L1143-LI147. Printed in Great Britain 

LETTER TO THE EDITOR 

Topological and geometrical properties of DLA clusters 

R M Malzbender, R C Mockler and W J O’Sullivan 
Condensed Matter Laboratory, Department of Physics, University of Colorado, Boulder, 
Colorado 80309, USA 

Received 2 October 1985 

Abstract. Three new exponents are calculated for diffusion limited aggregates in two 
dimensions via computer simulation. The 1 / N = O  limit gives I =  1.52, v=0.91 and 
d ,  = 2.56. These results confirm Martin’s conjecture D = l /  U, and are consistent with 
previous work indicating that topological rather than geometrical properties of random 
fractals are responsible for variations in fractal dimension. Diffusion on DLA clusters is 
anomalous with an exponent that is consistent with the Alexander-Orbach conjecture and 
satisfies the Einstein relation. 

Martin (1985) has recently attempted to refine the characterisation of random fractals 
by introducing two exponents, 5 and v, which describe the topological and geometrical 
connectivities of a structure. From previous work on percolation clusters (Majid et a1 
1984), percolation backbones (Hong et a1 1984) and lattice animals (Havlin et a1 1984) 
it appears that the qualitative variations in structure can be traced to differences in 5, 
whereas v tends to have a value close to 0.90 (in two dimensions) for all of the above 
systems. 

In this letter we present the determination of these exponents for the case of 
diffusion limited aggregation in two dimensions. These results imply that DLA follows 
the general pattern noted above-the geometrical exponent has a value of 0.91, which 
is roughly consistent with lattice animals, percolation clusters and percolation back- 
bones. In addition we have also determined the exponent for anomalous diffusion 
(Gefen et a1 1983); it appears that the Alexander-Orbach conjecture (Alexander and 
Orbach 1982) is satisfied for DLA in two dimensions. 

All three exponents are determined by considering various walks on a lattice fractal. 
5 and v are determined by considering the set of minimal paths on a cluster; a minimal 
path is the shortest path between two points that visits only occupied lattice sites. 5 
and v are then defined by 

7, - 1 C - I  

( r;)1’2 - I ”  

where nl is the number of minimal paths of length 1, and ( r f ) ” *  is the mean end-to-end 
distance of paths of length 1. 

The diffusion exponent d, is determined by executing a large number of random 
walks on the cluster and measuring the mean end-to-end geometric distance of each 
walk. For random fractals this will vary with the number of steps taken in a power 
law fashion with exponent l/d,: 

( r 2 (  f ) )  - t2’d*. 
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The clusters were generated on a 512x512 lattice according to the standard 
algorithm (Witten and Sander 1981). Clusters ranging in size from 100 particles to 
5000 particles were generated, with the larger clusters of 1000, 2000, 3000 and 5000 
particles being used for the extrapolation to infinite size. The smaller clusters were of 
interest in determining the effects of finite size upon fractal dimensionality. The 
simulations were carried out on relatively small minicomputers, which limited the 
maximum cluster size that could be generated in a reasonable time. This does not 
seem to be a problem; the 5000 particle clusters have values for the exponents that do 
not differ from the infinite size values by more than the numerical error. 

The exponents 5 and Y were obtained by exactly enumerating all the minimal points 
emanating from a randomly chosen origin site; for each path the geometrical length 
r was calculated. The enumeration was carried out to paths of 30 steps. By averaging 
over several thousand starting sites the distributions n, and ( r ? )  were determined. A 
final averaging over ten clusters of each size completed the process. In addition, the 
density-density correlation function of each cluster was determined by the usual FFT 

procedure to determine the Hausdofi dimension D separately (Witten and Sander 
1981). 

Figure 1 shows the number of minimal paths against path length averaged over all 
clusters of size 5000. For small path lengths the deviation from power law behaviour 
is quite significant; consequently the exponent was calculated using only the last 15 
data points. In this case extending the length of the minimal paths will improve the 
accuracy of l, although we feel the present results are sufficient to illustrate the general 
trends. 

The variation of geometrical distance with path length for the same data set is 
shown in figure 2. Here the power law behaviour is very evident. The reciprocal of 
the geometric exponent v determines the scaling of resistance with distance if loops 
can be neglected, as is widely believed for DLA. 

Figure 3 gives the anomalous diffusion results. These were obtained by executing 
10 000 random walks of length 1 to 100, averaged over all clusters of a given size. The 
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Figure 1. Number of minimal paths n, against topological length 1, averaged over all clusters 
of 5000 particles. R, was arbitrarily normalised to a maximum value of 1. Power law 
behaviour occurs for lengths greater than about 10. 



Letter to the Editor L1145 

0 001 1 I I I I I I I  I I I I l l 1  
1 10 IO 

I 

Figure 2. Mean square distance ( r : )  of minimal paths against topological distance 1, 
averaged over all clusters of 5000 particles. 
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Figure 3. Mean square distance (r2(ij) of random walks against number of steps t, averaged 
over all clusters of 5000 particles. 

Einstein relation, which relates the DC conductivity to the carrier mobility, can be used 
to obtain a scaling relation between the random walk exponent d,, the geometric 
exponent v and the fractal dimension D (Gefen er a1 1983): 

d , - D = v .  

Our values for the infinite size limits of these exponents satisfy this relation. 
The size dependence of the exponents is fairly significant. When the origin site is 

close to the boundary of the cluster the number of minimal paths found for that site 
is reduced, hence reducing the value of 5. There should be no size dependence, 
however, for v, since it is the result of end-to-end distance measurements on a set of 
minimal paths and does not depend on the number of such paths. The diffusion 
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exponent d ,  is expected to show some size dependence due to a reduction in geometric 
length for random walks originating near the boundary of a cluster. Figure 4 shows 
this behaviour quite clearly. By extrapolating to 1/ N = 0 we find that the limiting 
values are: 5 = 1.52 * 0.04, v = 0.91 * 0.01 and d ,  = 2.56 * 0.02. The ratio [/ v is indeed 
equal to D = 1.67 as proposed by Martin (and stated in slightly different form by 
Havlin er ai). Using these values we find the fracton dimension d ,  = 2 D / d ,  = 1.31, 
which is consistent with the Alexander-Orbach conjecture d,  =: within our errors, at 
least for d = 2. 
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Figure4. Size dependence of exponents. Cluster sizes are 1000, 2000, 3000 and 5000 
particles. The 1/ N = 0 limits satisfy all required scaling relations; the ratio 5/ U is equal 
to the accepted value of D (1.67) for two-dimensional DLA. 

Our result for 4' lies between percolation clusters and percolation backbones, as 
shown in table 1. While both backbones and DLA clusters have almost identical fractal 
dimensions, they are quite different structures qualitatively. It is this difference that 
is reflected in the values of the topological exponent. 

Table 1. Values of exponents for DLA, percolation clusters and backbones, and lattice 
animals in two dimensions. The DLA values are from the present work: the percolation 
results are from Hong et al (1984) and Majid et al (1984). Values in parentheses are 
derived from other exponents. 

D L A  1.67 1.52 0.91 2.56 (1.31) 
Percolation clusters 1.89 1.63 (0.86) (2.75) (1.37) 
Percolation backbones 1.66 1.44 (0.87) (2.54) (1.31) 
Lattice animals 1.56 1.33 (0.85) 2.78 (1.12) 

We would like to thank Professor J Dreitlein for helpful discussions regarding the 
minimal path algorithms. This work was supported by US Department of Energy 
contract No DE-AC02-82ER13004. 
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